Banco de Dados (Introdução)
MODELAGEM DE DADOS: 1 Modelo entidade-relacionamento. 3 Modelagem conceitual de dados. 3.1 Entidades. 3.2 Atributos. 3.3 Relacionamentos. 3.3.1 Grau dos relacionamentos. 3.3.2 Cardinalidade. 3.3.3 Tipos de relacionamentos. 3.4 Mecanismos avançados de abstração em um modelo conceitual de dados. 3.4.1 Repetição. 3.4.2 Autorrelacionamento. 3.4.3 Generalização e especialização. 3.4.4 Agregação.
4 Modelagem lógica de dados. 4.1 Conceitos em modelagem lógica de dados. 4.2 Normalização.
2 Linguagem de implementação banco de dados: banco físico, lógico e conceitual. (SQL)
5 Banco de dados relacional em plataforma baixa (Oracle)
5 Banco de dados relacional em plataforma baixa (SQL Server)
5 Banco de dados relacional em plataforma baixa (Postgree)
5 Banco de dados relacional em plataforma baixa (MySQL)
5 Data warehouse. 5.1 Modelagem dimensional. 5.2 Criação, implantação e manutenção de rotinas de ETL. 5.3 Conceito e aplicações. 5.4 Fatos e dimensões. 5.5 Operações OLAP. 5.6 Conceitos de data warehouse. 5.7 Técnica de modelagem dimensional e otimização de bases de dados para BI. (BI e Data Warehouse)
5 Data warehouse. 5.1 Modelagem dimensional. 5.2 Criação, implantação e manutenção de rotinas de ETL. 5.3 Conceito e aplicações. 5.4 Fatos e dimensões. 5.5 Operações OLAP. 5.6 Conceitos de data warehouse. 5.7 Técnica de modelagem dimensional e otimização de bases de dados para BI. (ETL)
5 Data warehouse. 5.1 Modelagem dimensional. 5.2 Criação, implantação e manutenção de rotinas de ETL. 5.3 Conceito e aplicações. 5.4 Fatos e dimensões. 5.5 Operações OLAP. 5.6 Conceitos de data warehouse. 5.7 Técnica de modelagem dimensional e otimização de bases de dados para BI. (OLAP)
BIG DATA: 1 Fundamentos. 2 Tipos de dados: estruturados, semiestruturados e não estruturados. 3 Conceitos dos três Vs. 4 Fluxo de big data: ingestão, processamento e disponibilização. 5 Armazenamento de big data. 6 Pipeline de dados. 7 Processamento distribuído. 8 Conceitos de data lake. 9 ETL X ELT. 10 Soluções de big data. 10.1 Arquitetura do ecossistema Apache Hadoop. 10.2 Componentes Hadoop: HBase, Kudu, Sqoop, Nifi, Hive, Impala, Spark, Spark Streaming, SOLR, Oozie, Yarn, Kafka, Flink e AirFlow. 11 Arquiteturas de big data. 11.1 Arquitetura Lambda. 11.2 Arquitetura Kappa. 11.3 Arquitetura de IoT. 11.4 Arquitetura de cloud computing para dados (AWS, Azure).
APRENDIZADO DE MÁQUINA: 1 Técnicas de classificação. 1.1 Naive Bayes. 1.2 Regressão logística. 1.3 Redes neurais artificiais. 1.3.1 Funções de ativação: limiar, linear, ReLU, logística, softmax, maxout e gaussiana. 1.3.2 Redes Perceptron de única e múltiplas camadas. 1.4 Árvores de decisão (algoritmos ID3 e C4.5) e florestas aleatórias (random forest). 1.5 Máquinas de vetores de suporte (SVM – support vector machines). 1.6 K vizinhos mais próximos (KNN – K-nearest neighbors). 1.7 Comitês de classificadores. 1.8 Avaliação de modelos de classificação: treinamento/teste/validação; validação cruzada; métricas de avaliação (matriz de confusão, acurácia, precisão, revocação, F1-score e curva ROC). 2 Técnicas de regressão. 2.1 Regressão linear. 2.2 Séries temporais (tendências, suavização exponencial e modelos ARIMA). 2.3 Redes neurais para regressão. 2.4 Árvores de decisão para regressão. 2.5 Máquinas de vetores de suporte para regressão. 2.6 Intervalos de confiança em regressão. 2.7 Avalia
APRENDIZADO DE MÁQUINA: 1 Técnicas de classificação. 1.1 Naive Bayes. 1.2 Regressão logística. 1.3 Redes neurais artificiais. 1.3.1 Funções de ativação: limiar, linear, ReLU, logística, softmax, maxout e gaussiana. 1.3.2 Redes Perceptron de única e múltiplas camadas. 1.4 Árvores de decisão (algoritmos ID3 e C4.5) e florestas aleatórias (random forest). 1.5 Máquinas de vetores de suporte (SVM – support vector machines). 1.6 K vizinhos mais próximos (KNN – K-nearest neighbors). 1.7 Comitês de classificadores. 1.8 Avaliação de modelos de classificação: treinamento/teste/validação; validação cruzada; métricas de avaliação (matriz de confusão, acurácia, precisão, revocação, F1-score e curva ROC). 2 Técnicas de regressão. 2.1 Regressão linear. 2.2 Séries temporais (tendências, suavização exponencial e modelos ARIMA). 2.3 Redes neurais para regressão. 2.4 Árvores de decisão para regressão. 2.5 Máquinas de vetores de suporte para regressão. 2.6 Intervalos de confiança em regressão. 2.7 Avalia
8 Visão computacional. 8.1 Reconhecimento facial. 8.2 Classificação de imagens. 8.3 Detecção de objetos. 8.4 Deep learning para visão computacional. 9 Aprendizado profundo. 9.1 Redes neurais convolucionais. 9.2 Redes neurais recorrentes. 9.2.1 Redes de Hopfield. 9.2.2 Long short-term memory (LSTM). 9.2.3 Redes perceptron multicamadas recorrentes. 9.2.4 Máquinas de Boltzmann. 9.2.5 Deep belief networks.
7 Processamento de linguagem natural (PLN). 7.1 Normalização textual (stop words, estemização, lematização e análise de frequência de termos). 7.2 Rotulação de partes do discurso (POS-tagging – part-of-speech tagging). 7.3 Reconhecimento de entidades (NER – named entity recognition) e rotulação IOB. 7.4 Modelos de representação de texto: N-gramas, modelos vetoriais de palavras (CBOW, Skip-Gram), modelos vetoriais de documentos (booleano, TF e TF-IDF, média de vetores de palavras e Paragraph Vector). 7.5 Métricas de similaridade textual (similaridade do cosseno, distância euclidiana, similaridade de Jaccard, distância de Manhattan e coeficiente de Dice). 7.6 Aplicações de PLN: sumarização automática de texto (abordagens extrativa e abstrativa), modelagem de tópicos em texto (algoritmos LSI, LDA e NMF), classificação de texto, agrupamento de texto, tradução automática de texto, análise de sentimentos e emoções em texto, reconhecimento de voz (STT – speech to text).
TRATAMENTO DE DADOS: 1 Normalização numérica. 2 Discretização. 3 Tratamento de dados ausentes. 4 Tratamento de outliers e agregações.
INGESTÃO DE DADOS: 1 Conceito de ingestão de dados. 2 Ingestão de dados estruturados, semiestruturados e não estruturados. 3 Ingestão de dados em lote (batch). 4 Ingestão de dados em streaming. 5 Ingestão de dados full × incremental. 6 Ingestão de dados CDC (change data capture).
PROCESSAMENTO DE DADOS: 1 Conceitos de processamento massivo e paralelo. 2 Processamento em lote (batch). 3 Processamento em tempo real (real time). 4 Processamento MapReduce.
QUALIDADE DE DADOS: 1 Conceitos e definições sobre qualidade de dados. 2 Dimensões da qualidade de dados (visão DMBOK). 3 Principais técnicas em qualidade de dados. 3.1 Profiling. 3.2 Matching. 3.3 Deduplicação. 3.4 Data cleansing. 3.5 Enriquecimento. 4 Boas Práticas para adoção da qualidade de dados. 5 Processos de qualidade para modelos de dados. 6 Noções básicas de visualização de dados. (Apenas em Vídeo)
6 Pandas. 7 Scikit-learn. 8 TensorFlow. 9 PyTorch. 10 Keras. 11 NLTK.
2 Linguagem de programação R.